• About
  • The BIODESERT global survey
  • Publications
  • Team
  • Collaborators
  • News
  • Contact
BIODESERT Biological feedbacks and ecosystem resilience under global change: a new perspective on dryland desertification
About

BIODESERT is a research project funded by the European Research Council (ERC) under the European Community’s Horizon 2020 Programme (ERC Grant agreement n° 647038). This project was awarded to Prof. Fernando T. Maestre in the 2014 Consolidator Grant call, and it is being carried out at the Dryland Ecology and Global Change Lab of the Rey Juan Carlos University (Móstoles, Spain) between January 2016 and December 2020.

Changes in climate and land use (e.g., increased grazing pressure), are two main global environmental change and desertification drivers in drylands (arid, semi-arid and dry-subhumid areas). Understanding how dryland ecosystems will respond to them is crucial because they cover 45% of the world’s land surface and host over 38% of the human population. Drylands are also of paramount importance for biodiversity, as they host many endemic plant and animal species, and include about 20% of the major centers of global plant diversity and over 30% of the designated endemic bird areas.

Using a combination of field observations of dryland ecosystems gathered around the world, satellite data, mathematical and statistical modelling and manipulative experiments conducted in the field and under controlled conditions, the ERC-funded BIODESERT project aims to:

  1. Test how changes in climate and grazing pressure determine spatio-temporal patterns in ecosystem functioning in global drylands
  2. Assess how attributes of biological communities, such as biodiversity, modulate ecosystem resilience (i.e. their ability to respond to and recover from disturbances) to climate change and grazing pressure at various spatial scales (from local to global)
  3. Test and develop early warning indicators of desertification
  4. Forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios

Because of the extent of dryland ecosystems globally, and the dependence of an important part of the world´s population on them, it is crucial to better understand how the provision of ecosystem services by drylands, which his strongly linked to ecosystem functions such as biomass production and nutrient cycling, is being affected by climate change and desertification. Land degradation in drylands already affects ~250 million people in the developing world, a number that is likely to increase as a consequence to climate change and human population growth. The topics being addressed by BIODESERT are thus of major societal importance, as the knowledge generated by the project can help to improve human livelihoods in drylands worldwide, and by doing so to safeguard the sustainability of our planet.

The BIODESERT global survey

A key task of the project is the BIODESERT global survey, a large co-operative field survey aiming to establish a network of monitoring plots among dryland areas of the globe to evaluate how simultaneous changes in climate and grazing pressure affect both biotic attributes (of above- and belowground communities, including vascular plants, bacteria, fungi, protists and other soil fauna) and ecosystem multifunctionality (i.e. the provision of several ecosystem processes simultaneously) in global drylands. With this survey we aim to have a truly global set of field plots sampled with the same protocols encompassing most of aridity/grazing pressure conditions that can be found in global drylands nowadays.

The BIODESERT survey is coordinated by Prof. Fernando T. Maestre and the project team, who has previous experience in the setup, management and execution of large surveys such as BIODESERT; over the period 2006-2014 Prof. Maestre coordinated another large-scale survey in 236 drylands from six continents carried out during the development of the BIOCOM research project, funded by the Starting Grants program of the European Research Council.

As of July 2018, the BIODESERT consortium is formed by over 60 research groups (see the Collaborators tab for details) working in 26 different countries with dryland ecosystems (Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, China, Ecuador, Hungary, Iran, Israel, Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, Palestine, Peru, Portugal, South Africa, Spain, Tunisia, USA and Venezuela), who have surveyed more than 300 dryland ecosystems in the field. We are currently planning and/or surveying additional sites in Portugal, Niger and Morocco, which should be completed by the end of 2018. Field data are being collected according to a standardized protocol, and all the soil and plant samples being collected are sent to the laboratories of the Rey Juan Carlos University for analyses.

Figure 1. Sites surveyed so far (black dots) or in progress (red dots) as per July 2018. At each site, three-four plots have been surveyed along a local grazing intensity gradient.

The BIODESERT global survey, the first of its kind, will provide invaluable information on how increases in aridity and grazing pressure, two major global change and desertification drivers in drylands, will affect the structure and functioning of dryland ecosystems worldwide. This survey is going beyond the state of the art in terms of its global coverage, number of field sites surveyed, plant/soil samples being collected and amount of data being generated. This unique survey and the data it is generating will allow us to test multiple questions at the edge of multiple research fronts, including community/ecosystem ecology, global change biology and desertification. These data will also be of particular interest for improving the management of grazing under climate change, something critical to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.

Publications

A dedicated Google Scholar page for the Project, with updated citations for the publications of the project, can be found here

  1. Lafuente, A., M. A. Bowker, M. Delgado-Baquerizo, J. Durán, B. K. Singh & F. T. Maestre. Global drivers of methane oxidation and denitrifying gene distribution in drylands. Global Ecology and Biogeography (in press).
  2. Le Bagousse-Pinguet, Y., S. Soliveres, N. Gross, R. Torices, M. Berdugo & F. T. Maestre. Phylogenetic, functional and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences USA, doi: 10.1073/pnas.1815727116
  3. Ye, J.-S., M. Delgado-Baquerizo, S. Soliveres & F. T. Maestre. Multifunctionality debt in global drylands linked to past biome and climate. Global Change Biology, doi: 10.1111/gcb.14631
  4. Moreno-Jiménez, E., C. Plaza, H. Saiz, R. Manzano, M. Flagmeier & F. T. Maestre. 2019. Aridity and reduced soil micronutrient availability in global drylands. Nature Sustainability, doi: 10.1038/s41893-019-0262-x
  5. Maestre, F. T. 2019. Ten simple rules towards healthier research labs. PLoS Computational Biology doi: 10.1371/journal.pcbi.1006914
  6. Archer, S. D. J., K. C. Lee, T. Caruso, T. Maki, C. K. Lee, D. A. Cowan, F. T. Maestre & S. B. Pointing. 2019. Microbial dispersal limitation to isolated soil habitats in the McMurdo Dry Valleys of Antarctica. Nature Microbiology, doi: 10.1038/s41564-019-0370-4
  7. Gaitán, J. J., F. T. Maestre, G. Buono, D. Bran, A. J. Dougill, G. García Martínez, D. Ferrante, R. Guuroh, A. Lindstaeter, V. Massara, A. D. Thomas & G. Oliva. 2019. Biotic and abiotic drivers of topsoil organic carbon concentration in drylands have similar effects at regional and global scales. Ecosystems, doi: 10.1007/s10021-019-00348-y
  8. Delgado-Baquerizo, M., R. Bardgett, P. Vitousek, F. T. Maestre, M. Williams , D. J. Eldridge, H. Lambers, A. Gallardo, O. Sala, S. Abades, F. Alfaro, A. A. Berhe, M. A. Bowker, C. Currier, N. Cutler, L. García-Velázquez, S. Hart, P. Hayes , Z.-Y. Hseu, M. Kirchmair, S. Neuhause , V. Peña, C. Pérez, S. C. Reed, F. Santos, C. Siebe, B. Sullivan, L. Weber-Grullon & N. Fierer. 2019. Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences USA 116: 6891-6896. doi: 10.1073/pnas.1818400116
  9. Berdugo, M., S. Soliveres, S. Kéfi & F. T. Maestre. 2019. The interplay between facilitation and habitat type drives spatial vegetation patterns in global drylands. Ecography 42: 755-767. doi: 10.1111/ecog.03795
  10. Saiz, H., Y. Le Bagousse-Pinguet, N. Gross & F. T. Maestre. 2019. Intransitivity increases plant functional diversity by limiting dominance in drylands worldwide. Journal of Ecology 107: 240-252. doi: 10.1111/1365-2745.13018
  11. Baldauf, S., M. Ladrón de Guevara, B. Tiejten & F. T. Maestre. 2018. Soil moisture dynamics under two rainfall frequency treatments drive early spring CO2 gas exchange of lichen-dominated biocrusts in central Spain. PeerJ 6: e5904, doi: 10.7717/peerj.5904
  12. DeMalach, N., H. Saiz, E. Zaady & F. T. Maestre. 2019. Plant species-area relationships are determined by evenness, cover and spatial aggregation in drylands worldwide. Global Ecology and Biogeography 28: 290-299. doi: 10.1111/geb.12849
  13. Dacal, M., M. A. Bradford, C. Plaza, F. T. Maestre & P. García-Palacios. 2019. Soil microbial respiration adapts to ambient temperature in global drylands. Nature Ecology & Evolution 3: 232–238. doi: 10.1038/s41559-018-0770-5
  14. Berdugo, M., F. T. Maestre, S. Kéfi, N. Gross, Y. Le Bagousse-Pinguet & S. Soliveres. 2019. Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. Journal of Ecology 107: 190-202. doi: 10.1111/1365-2745.13006
  15. Eldridge, D. J., F. T. Maestre, T. B. Koen & M. Delgado-Baquerizo. 2018. Australian dryland soils are acidic and nutrient-depleted, and have unique microbial communities compared with other drylands. Journal of Biogeography 45: 2803-2814. doi: 10.1111/jbi.13456
  16. Delgado-Baquerizo, M., F. T. Maestre, D. J. Eldridge, M. A. Bowker, T. Jeffries & B. K. Singh. 2018. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents. New Phytologist 220: 824–835. doi: 10.1111/nph.15120
  17. Ladrón de Guevara M., B. Gozalo, J. Raggio, A. Lafuente, M. Prieto & F. T. Maestre. 2018. Warming reduces the cover, richness and evenness of lichen-dominated biocrusts but promotes moss growth: Insights from an eight-year experiment. New Phytologist 220: 811–823. doi: 10.1111/nph.15000
  18. Lafuente, A., M. Berdugo, M. Ladrón de Guevara, B. Gozalo & F. T. Maestre. 2018. Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events. Ecohydrology 11: e1935. doi: 10.1002/eco.1935
  19. García-Palacios, P., C. Escolar, M. Dacal, M. Delgado-Baquerizo, B. Gozalo, Victoria Ochoa & F. T. Maestre. 2018. Pathways regulating decreased soil respiration with warming in a biocrust-dominated dryland. Global Change Biology 24: 4645-4656. doi: 10.1111/gcb.14399
  20. Plaza, C., C. Zaccone, K. Sawicka, A. M. Méndez, A. Tarquis, G. Gascó, E. A.G. Schuur & F. T. Maestre. 2018. Soil resources and element stocks in drylands to face global issues. Scientific Reports 8: 13788.
  21. García-Palacios, P., N. Gross, J. Gaitán & F. T. Maestre. 2018. Climate mediates the biodiversity-ecosystem stability relationship globally. Proceedings of the National Academy of Sciences USA 115: 8400-8405. doi: 10.1073/pnas.1800425115
  22. Zhao, Y., X. Wang, C. J. Novillo, P. Arrogante-Funes, R. Vázquez.Jiménez & F. T. Maestre. 2018. Albedo estimated from remote sensing correlates with ecosystem multifunctionality in global drylands. Journal of Arid Environments 157: 116-123. doi: 10.1016/j.jaridenv.2018.05.010
  23. García-Palacios, P., N. Gross, J. Gaitán & T. Maestre. Climate mediates the biodiversity-ecosystem stability relationship globally. Proceedings of the National Academy of Sciences USA doi: 10.1073/pnas.1800425115
  24. García-Palacios, P., C. Escolar, M. Dacal, M. Delgado-Baquerizo, B. Gozalo, Victoria Ochoa & T. Maestre. 2018. Pathways regulating decreased soil respiration with warming in a biocrust-dominated dryland. Global Change Biology, doi: 10.1111/gcb.14399
  25. Zhao, Y., X. Wang, C. J. Novillo, P. Arrogante-Funes, R. Vázquez­Jiménez & T. Maestre. 2018. Albedo estimated from remote sensing correlates with ecosystem multifunctionality in global drylands. Journal of Arid Environments, doi: 10.1016/j.jaridenv.2018.05.010
  26. Saiz, H., Y. Le Bagousse-Pinguet, N. Gross & T. Maestre. 2018. Intransitivity increases plant functional diversity by limiting dominance in drylands worldwide. Journal of Ecology doi: 10.1111/1365-2745.13018
  27. Berdugo, M., T. Maestre, S. Kéfi, N. Gross, Y. Le Bagousse-Pinguet & S. Soliveres. 2018. Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. Journal of Ecology doi: 10.1111/1365-2745.13006
  1. Delgado-Baquerizo, M., T. Maestre, D. J. Eldridge, M. A. Bowker, T. Jeffries & B. K. Singh. 2018. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents. New Phytologist doi: 10.1111/nph.15120
  2. Lafuente, A., M. Berdugo, M. Ladrón de Guevara, B. Gozalo & T. Maestre. 2018. Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events. Ecohydrology, doi: 10.1002/eco.1935
  3. Ladrón de Guevara M., B. Gozalo, J. Raggio, A. Lafuente, M. Prieto & T. Maestre. 2018. Warming reduces the cover, richness and evenness of lichen-dominated biocrusts but promotes moss growth: Insights from an eight-year experiment. New Phytologist, doi: 10.1111/nph.15000
  4. Benavent-González, A., M. Delgado-Baquerizo, L. Fernández-Brun, B. K. Singh, T. Maestre & L. G. Sancho. Identity of plant, lichen and moss species connects with microbial abundance and soil functioning in maritime Antarctica. Plant and Soil 429:35–52. doi: 10.1007/s11104-018-3721-7
  5. Saiz, H., J. Gómez-Gardeñes, J. P. Borda & T. Maestre. 2018. The structure of plant spatial association networks is linked to plant diversity in global drylands. Journal of Ecology 108: 1443-1453. doi: 10.1111/1365-2745.12935
  6. Durán, J., M. Delgado-Baquerizo, A. J. Dougill, R. T. Guuroh, A. Linstädter, A. Thomas & T. Maestre. 2018. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology 99: 1184-1193. doi: 10.1002/ecy.2199
  7. León-Sánchez, L., E. Nicolás, M. Goberna, I. Prieto, T. Maestre & J. I. Querejeta. 2018. Poor plant performance under simulated climate change is linked to mycorrhizal responses in a semiarid shrubland. Journal of Ecology 106: 960-976. doi: 10.1111/1365-2745.12888
  8. Delgado-Baquerizo, M., D. J. Eldridge, T. Maestre, V. Ochoa, B. Gozalo, P. B. Reich & B. K. Singh. 2018. Aridity decouples C:N:P stoichiometry across multiple trophic levels in terrestrial ecosystems. Ecosystems 21: 459–468. doi: 10.1007/s10021-017-0161-9
  9. Delgado-Baquerizo, M., D. J. Eldridge, T. Maestre, S. B. Karunaratne, P. Trivedi, T. Hengl, P. B. Reich & B. K. Singh. 2018. Response to comment on “Climate legacies drive global soil carbon stocks in terrestrial ecosystems”. Science Advances 4: eaat1296. doi: 10.1126/sciadv.aat1296
  10. Manning, P. F. van der Plas, S. Soliveres, E. Allan, T. Maestre, G. Mace, M. Whittingham & M. Fischer. 2018. Redefining ecosystem multifunctionality. Nature Ecology & Evolution 2: 427–436. doi: 10.1038/s41559-017-0461-7
  11. Cano-Díaz, C., P. Mateo, M. A. Muñoz-Martín & T. Maestre. 2018. Diversity of biocrust-forming cyanobacteria in a semiarid gypsiferous site from Central Spain. Journal of Arid Environments 151: 83-89. doi: 10.1016/j.jaridenv.2017.11.008
  12. Ramirez, K. S., C. G. Knight, M. Hollander, F. Q. Brearley, B. Constantinides, A. Cotton, S. Creer, T. W. Crowther, J. Davison, M. Delgado-Baquerizo, E. Dorrepaal, D. R. Elliott, G. Fox, R. I. Griffiths, C. Hale, K. Hartman, A. Houlden, D. L. Jones, E. J. Krab, T. Maestre, K. L. McGuire, S. Monteux, C. H. Orr, W. H. van der Putten, I. S. Roberts, D. A. Robinson, J. D. Rocca, J. Rowntree, K. Schlaeppi, M. Shepherd, B. K. Singh, A. L. Straathof, J. M. Bhatnagar, C. Thion, M. G. A. van der Heijden & F. T. de Vries D. 2018. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology 3: 189–196. doi: 10.1038/s41564-017-0062-x
  13. Delgado-Baquerizo, M., A. M. Oliverio, T. Brewer, A. Benavent-González, D. J. Eldridge, R. Bardgett, F. T. Maestre, B. K. Singh & N. Fierer. 2018. A global atlas of the dominant bacteria found in soil. Science 359: 320–325. doi: 10.1126/science.aap9516
  14. Ochoa-Hueso, R., D. J. Eldridge, M. Delgado-Baquerizo, S. Soliveres, M. A. Bowker, N. Gross, Y. Le Bagousse-Pinguet, J. L. Quero, M. García-Gómez, E. Valencia, T. Arredondo, L. Beinticinco, D. Bran, A. Cea, D. Coaguila, A. J. Dougill, C. I. Espinosa, J. Gaitán, R. T. Guuroh, E. Gusman, J. R. Gutiérrez, R. M. Hernández, E. Huber-Sannwald, T. Jeffries, A. Linstädter, R. L. Mau, J. Monerris, A. Prina, E. Pucheta, I. Stavi, A. D. Thomas, E. Zaady, B. K. Singh & T. Maestre. 2018. Plant traits and fungal abundance drive fertile island formation in global drylands. Journal of Ecology 106: 242–253. doi: 10.1111/1365-2745.12871
  15. Plaza, C., G. Gascó, A. M. Méndez, C. Zaccone & F. T. Maestre. Soil Organic Matter in Dryland Ecosystems. In: The Future of Soil Carbon, pp. 39-70. Ed. by C. García, P. Nannipieri & M. T. García. Academic Press, Londres. ISBN: 978-0-12-811687-6. doi: 10.1016/B978-0-12-811687-6.00002-X
  16. Maestre, F. T., R. Solé & B. K. Singh. Microbial biotechnology as a tool to restore degraded drylands. Microbial Biotechnology 10: 1250–1253. doi: 10.1111/1751-7915.12832
  17. Delgado-Baquerizo, M., D. J. Eldridge, V. Ochoa, B. Gozalo, B. K. Singh & T. Maestre. 2017. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters 20: 1295–1305. doi: 10.1111/ele.12826
  18. Delgado-Baquerizo, M., A. Bissett, J. Eldridge, F. T. Maestre, J.-Z. He, J.-T. Wang, Y.-R. Liu, B. K. Singh & N. Fierer. 2017. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nature Ecology & Evolution 1: 1339–1347. doi: 10.1038/s41559-017-0259-7
  19. Yuan, Z. Y., F. Jiao, X. R. Shi, J. Sardans, T. Maestre, M. Delgado-Baquerizo, P. B. Reich & J. Peñuelas. 2017. Experimental and observational studies find contrasting soil nutrient responses to climate change. eLife 6: e23255. doi: 10.7554/eLife.23255
  20. Gross, N., Y. Le Bagousse-Pinguet, P. Liancourt, M. Berdugo, N. J. Gotelli & T. Maestre. 2017. Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution 1: 0132. doi: 10.1038/s41559-017-0132
  21. Delgado-Baquerizo, M., D. J. Eldridge, T. Maestre, S. B. Karunaratne, P. Trivedi, T. Hengl, P. B. Reich & B. K. Singh. 2017. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Science Advances 3: e1602008. doi: 10.1126/sciadv.1602008
  22. Maestre, F. T., D. J. Eldridge, S. Soliveres, S. Kéfi, M. Delgado-Baquerizo, M. A. Bowker, J. Gaitán, M. Berdugo, A. Gallardo, R. Lázaro & P. García-Palacios. Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology, Evolution and Systematics 47: 215-237. doi: 10.1146/annurev-ecolsys-121415-032311
  23. Maestre, F. T., D. J. Eldridge & S. Soliveres. A multifaceted view on the impacts of shrub encroachment. Applied Vegetation Science 19: 369–370. doi: 10.1111/avsc.12254
Team
The core BIODESERT research team is formed by the following members, most of them belonging to the Dryland Ecology and Global Change Lab (DEGCL) at Rey Juan Carlos University or that have been affiliated to the lab in the past:

Fernando T. Maestre, Professor of Ecology, PI of BIODESERT and of the DEGCL

Tasks: Overall coordination and scientific direction of the project.

Miguel Berdugo Vega, postdoctoral researcher at DEGCL

Tasks: mathematical modelling and data analyses.

Concha Cano Díaz, PhD student at DEGCL

Tasks: field/laboratory work, bioinformatic analyses.

Juan Gaitán, researcher at INTA (Argentina)

Tasks: fieldwork, remote sensing support and data analysis.

Miguel García Gómez, PhD student at DEGCL

Tasks: fieldwork and GIS support.

Beatriz Gozalo, DEGCL, technician

Tasks: field/laboratory work, management of soil/plant samples and of soil databases.

Nicolas Gross, researcher at INRA/CNRS (France)

Tasks: fieldwork, management of functional trait data and data analysis.

Rocío Hernández, lecturer at Swansea University (UK)

Tasks: remote sensing support and data analysis.

Yoann le Bagousse-Pinguet, researcher at CNRS (France)

Tasks: fieldwork, researcher, management of functional trait data and data analysis.

Betty Josefina Mendoza, technician at DEGCL

Tasks: laboratory work, management of soil/plant samples, administrative support.

Victoria Ochoa, technician at DEGCL

Tasks: field/laboratory work, management of soil/plant samples and of soil databases.

César Plaza, researcher at CSIC

Tasks: laboratory work and data analysis.

Hugo Sáiz Bustamante, postdoctoral researcher at DEGCL

Tasks: fieldwork, management of vegetation databases and data analysis.

Enrique Valencia, postdoctoral researcher at DEGCL

Tasks: management of vegetation databases and data analysis.

Jiansheng Ye, postdoctoral researcher at DEGCL and Associate Professor at Lanzhou University (China)

Tasks: mathematical modelling and data analyses.

Collaborators

The BIODESERT global survey is being made possible thanks to the support and involvement of a global network of scientists, which include the following colleagues:

Abel Augusto Conceição, Brasil

Abderrazak Tlili (Tunisia)

Alex Fajardo, Chile

Alberto L. Teixido, Brazil

Alexandra Rodríguez, Portugal

Alice Nunes, Portugal

Amghar Fateh, Algeria

Andrea del Pilar Castillo-Monroy, Ecuador

Andreas von Heßberg, Germany (Peru)

Andrew Thomas, UK (Botswana)

Andrew Dougill, UK (Botswana)

Anja Linstädter, Germany (South Africa)

Anke Jentsch, Germany (Peru)

Anthony Darrouzet-Nardi, USA

Antonio Manzaneda, (Spain)

Ayman Salah, Palestine

Bazartseren Boldgiv, Mongolia

Ben Salem Farah, Tunisia

Benoît Richard, France (Algeria)

Chongfeng Bu, China

Carlos Iván Espinosa, Ecuador

Colton Stephens, Canada

Concepción L. Alados (Spain)

Courtney Currier, USA

Cristina Branquinho, Portugal

David A. Donoso Vargas, Ecuador

David Eldridge, Australia

Deli Wang, China

Eli Zaady, Israel

Elizabeth Gusman Montalván, Ecuador

Elizabeth Huber-Sannwald, Mexico

Eugene Marais, Namibia

Farah Ben Salem (Tunisia)

Florian Jeltsch, Germany (Namibia)

Frederic Mendes Hughes, Brasil

Gabriel Oliva, Argentina

Gastón Oñatibia, Argentina

Gerardo Moreno, Spain

Gillian Maggs-Kölling, Namibia

Glenda Wardle, Australia

Guadalupe Peter, Argentina

Hamid Ejtehadi, Iran

Heather Throop, USA

Helena Castro, Portugal

Ilan Stavi, Israel

Jalil Ahmadi, Iran

James Val (Australia)

Jan C. Ruppert, Germany (South Africa)

João V.S. Messeder, Brazil

Jorge Durán, Portugal

Juan Gaitán, Argentina

Juan Pablo Mora, The Netherlands (Chile)

Juan Vicente Gallego, Spain (Kenya)

Katja Geissler, Germany (Namibia)

Khadijeh Bahalkeh, Iran

Kudzai Farai Kaseke USA (Namibia)

Lauchlan Fraser, Canada

Laura Yahdjian, Argentina

Laureano Gherardi, USA

Lixin Wang, USA (Namibia)

Liesbeth van den Brink, Germany (Chile)

Luiza O. Azevedo, Brazil

Katja Tielbörger, Germany (Chile, Palestine)

Marco O. Pivari, Brazil

Mathew A. Bowker, USA

Mchich Derak, Morocco

Mehbi Abedi, Iran

Melanie Köbel, Portugal

Michelle Louw, South Africa

Mitch McClaran, USA

Mohammad Farzam, Iran

Negar Ahmadian, Iran

Niels Blaum, Germany (Namibia)

Norbert Hölzel, Germany (Kazhajastan)

Orsolya Valko, Hungary

Osvaldo Sala, USA

Oswaldo Jadán, Ecuador

Oumarou Malam-Issa, Niger

Patricio Castro, Ecuador

Pedro Pinho, Portugal

Pedro Rey, Spain

Peter Le Roux, South Africa

Rafaella Canessa, Germany (Chile)

Rosa Mary Hernández, Venezuela

Pierre Liancourt, Germany (Palestine)

Pierre Margerie, France (Algeria)

Raúl Emiliano Quiroga, Argentina

Reza Yari, Iran

Ritha Kapitango, Namibia

Rodrigo José Ahumada, Argentina

Roukaya Chibani (Tunisia)

Samantha Travers (Australia)

Sasha C. Reed, USA

Seth Munson, USA

Shani Rivera, Mexico

Soroor Rahmanian, Iran

Thulani Makhalanyane, South Africa

Wanyoike Wamiti, Kenya

Yolanda Pueyo, Spain

Yonathan Cáceres, Spain

Xiaobing Zhou, China

Xinkai Li, China

In addition to the colleagues involved in the BIODESERT global survey, other colleagues are supporting different tasks of the project, who also has an international steering committee (SC) that provides advice on important topics and discuss with the PI any issues arising during the development of the project. These colleagues include:

 

Brajesh Singh, Australia, member of SC, bioinformatics and soil microbiology

David Eldridge, Australia, member of SC, grazing and dryland ecology

James F. Reynolds, USA, member of SC, desertification and dryland ecology

Matthias Rillig, Germany, soil ecology

Nico Eisenhauer, Germany, soil ecology

Osvaldo Sala, USA, member of SC, dryland ecology and ecosystem services

Sonia Kéfi, France, member of SC, desertification and mathematical modelling

News
Tweets by biodesert_erc
Contact

Dryland Ecology and Global Change Lab of the Rey Juan Carlos University
Móstoles, Spain.

General Enquiries
fernando.maestre@urjc.es

© Biodesert